Monomial geometric programming with fuzzy relation equation constraints
نویسندگان
چکیده
In this paper, an optimization model with an objective function as monomial subject to a system of the fuzzy relation equations with max-bounded difference (maxBD) composition operator is presented. We firstly determine its feasible solution set. Then some special characteristics of its feasible domain and the optimal solutions are studied. Some procedures for reducing and decomposing the problem into several subproblems with smaller dimensions are proposed. Finally, an algorithm is designed to optimize the objective function of each sub-problem.
منابع مشابه
Separable programming problems with the max-product fuzzy relation equation constraints
In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with decreasing and increasing objective functions with the same constraints. They are solved by the maximum solution and one of minimal solutions of its feasible domain, respectively. Their combination produces the original optimal solution. The ...
متن کاملGeometric Programming Problem with Trapezoidal Fuzzy Variables
Nowadays Geometric Programming (GP) problem is a very popular problem in many fields. Each type of Fuzzy Geometric Programming (FGP) problem has its own solution. Sometimes we need to use the ranking function to change some part of GP to the linear one. In this paper, first, we propose a method to solve multi-objective geometric programming problem with trapezoidal fuzzy variables; then we use ...
متن کاملMonomial geometric programming with fuzzy relation inequality constraints with max-product composition
Monomials function has always been considered as a significant and most extensively used function in real living. Resource allocation, structure optimization and technology management can often apply these functions. In optimization problems the objective functions can be considered by monomials. In this paper, we present monomials geometric programming with fuzzy relation inequalities constrai...
متن کاملMULTI-OBJECTIVE OPTIMIZATION WITH PREEMPTIVE PRIORITY SUBJECT TO FUZZY RELATION EQUATION CONSTRAINTS
This paper studies a new multi-objective fuzzy optimization prob- lem. The objective function of this study has dierent levels. Therefore, a suitable optimized solution for this problem would be an optimized solution with preemptive priority. Since, the feasible domain is non-convex; the tra- ditional methods cannot be applied. We study this problem and determine some special structures related...
متن کاملPosynomial geometric programming problem subject to max–product fuzzy relation equations
In this article, we study a class of posynomial geometric programming problem (PGPF), with the purpose of minimizing a posynomial subject to fuzzy relational equations with max–product composition. With the help of auxiliary variables, it is converted convert the PGPF into an equivalent programming problem whose objective function is a non-decreasing function with an auxiliary variable. Some pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FO & DM
دوره 6 شماره
صفحات -
تاریخ انتشار 2007